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Proofs of Central-Difference Interpolation Formulas
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Using umbral calculus results we give some elegant proofs for the classical
central-difference polynomial interpolation formulas.

DELTA OPERATOR AND TAYLOR EXPANSION

Let D and E denote the differentiation and forward-shift operators, respec­
tively. A linear operator on the space of polynomials is called shift-invariant
if it commutes with the operator E. Each shift-invariant operator can be
expressed as a power series in D, L~=o cnD n. A delta operator is a shift­
invariant operator with Co =°and c1 *- 0. For each delta operator Q there is
a unique sequence of polynomials Po(x), PI(X), pix),..., where Pn(x) is a
polynomial of degree n, Po(x) = I, and O=Pl(O) =piO) = ... , such that
QPn(x) = nPn_1(x), n = 1,2,3,.... These polynomials have been called
poweroids [10, p.335], basic polynomials [8, p.592; 3, p. 181] and
associated polynomials [7, p. 105; 5, sect. 5].

The principal tool for our proofs is the following generalization of the
Taylor expansion formula.

THEOREM [6, Sect. 5; 7, Theorem 1O.c]. Let Q be a delta operator with
associated sequence of polynomials {Pn(x)}. Let T be an invertible shift­
invariant operator, then

CENTRAL-DIFFERENCE INTERPOLAnON FORMULAS

Consider the delta operator () = E I
/
2

- E- 1
/
2

, called the central-difference
operator. Its associated sequence of polynomials is {x[n J = x(x + !n - 1)
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(x +!n - 2) ... (x -!n + I)} [9, p. 8; 4, Sect. 6.5; 7, p. 135]. The expansion
formula

is not a useful interpolation formula since it requires values at -0.5, 0.5, 1.5,
etc., in addition to values at integral points.

The averaging operator p. = l(E 1/2 +E -1/2) is an invertible operator, and
p.-Ix[n) = x[n+IJ/x [9, p. 10]. This equality is an immediate consequence
of the Rodrigues formula [10, p. 338; 4, Theorem 4(4)] Pn+I(X)=

X (dQ/dD)-1 Pn(x), since d~/dD=p.. Writing x1n)/x as x[nJ-I, we have

This formula was derived by J. F. Steffensen in [10, p. 362].
Since x[2nJ= D7:01(X2 -f) and X 12n + 11 = x D7:o1(X2 - (j + !)2), both

x[2n) and x[2n+IJ-I are even functions and both x[2n-I) and x[2n1-1 are odd

functions. Consequently we have

and
[2n-I) [2nJ-l

!(EX_E- X)=) X ~2n-I=)' X p.~2n-l.
2 ..... (2n-l)! ..... (2n-l)!

By combining the above equations we obtain the Stirling and Bessel inter­
polation formulas:

co x[2n) x[2n+2J-l
EX = L __ ~2n + p.~2n+ 1

n=O 2n! (2n + I)! '

co X[2n+lJ-l x[2n+lJ
EX = L ,p.~2n + , ~2n+l.

n=O 2n. (2n + 1).

To derive the Everett formula, we note that



CENTRAL-DIFFERENCE INTERPOLAnON

and
EX_E- X EX_E- x

E -E- I - 2p.o

f (x+m)o2m.
m=O 2m + 1

To derive the Steffensen formula, consider
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To obtain the Gauss forward and backward formulas we employ the
following odd-even decompositions:

and

REMARKS

The traditional way of proving these formulas is to first derive the Gauss
forward and backward formulas. The Stirling and Bessel formulas are
obtained by averaging the two Gauss formulas, while the Everett and
Steffensen formulas are obtained by eliminating from the Gauss forward
formula the odd and even differences, respectively. For various symbolic
calculus proofs of these formulas, we refer the reader to [9, Sect. 18;
2, p. 175, No.5; 1, Sect. 8.5].
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